A NOVEL TYPE OF PHOSPHOLIPASE A₂ INHIBITOR, THIELOCIN A1 β , AND MECHANISM OF ACTION

KAZUSHIGE TANAKA, SHIGERU MATSUTANI, KOICHI MATSUMOTO and TADASHI YOSHIDA*

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received for publication January 17, 1992)

Thielocin A1 β , a novel phospholipase A₂ inhibitor, was isolated from *Thielavia terricola* RF-143. It inhibited various phospholipase A₂s in a dose-dependent manner. Among these, group II phospholipase A₂ from rat was most sensitive to thielocin A1 β (IC₅₀=0.0033 μ M). The inhibition of phospholipase A₂ by thielocin A1 β was independent of Ca²⁺ and substrate concentration. In addition, the inhibition of rat group II phospholipase A₂ was noncompetitive (*Ki*=0.0068 μ M) and reversible. Furthermore, thielocin A1 β quenched the relative fluorescent intensity of *Naja naja* venom phospholipase A₂ and in a dose-dependent manner; 50% quench was noted with a molar ratio of thielocin A1 β enzyme of 2.2. These observations indicated that inhibition of phospholipase A₂ by thielocin A1 β may result from direct interaction with the enzyme.

Phospholipase A_2 (PLA₂) is a lipolytic enzyme that specifically hydrolyzes the sn-2 position of a glycerophospholipid¹). It exists in both extracellular and intracellular forms²). The former can be classified into two types, group I (PLA₂-I) and group II (PLA₂-II), based on the primary structure³). These enzymes are similar in that they are totally Ca²⁺ dependent, most active at neutral-to-alkaline pH, and have a molecular weight of about 14 kdaltons. Mammalian PLA₂-I is an important enzyme present in abundance in the digestive secretion of the pancreas⁴). On the other hand, mammalian PLA₂-IIs are found in inflammatory regions, such as glycogen-induced ascitic fluid in rabbits⁵), casein-induced peritoneal fluid in rats⁶, and synovial fluid of patients with rheumatoid arthritis⁷). These findings strongly implicate the importance of mammalian PLA₂-II in promoting inflammatory processes. In fact, some studies have shown the proinflammatory activities of PLA₂-II^{8,9}). Re-

cently, we isolated thielocin A1 β , a novel PLA₂ inhibitor, from the fermentation broth of *Thielavia terricola* RF-143¹⁰⁾ (Fig. 1). To our surprise, thielocin A1 β showed specific inhibition of rat PLA₂-II. In this report, we describe the inhibitory mechanism of PLA₂ and some of its other biological properties.

Materials and Methods

Materials

Thielocin A1 β was prepared as previously reported¹⁰⁾. L- α -Phosphatidylethanolamine (from egg yolk), L- α -phosphatidylcholine (from egg yolk), L- α -phosphatidylinositol (from soybean), Triton X-100, mepacrine (quinacrine), *p*-bromophenacyl bromide, bee venom PLA₂, *Naja naja* venom PLA₂,

Fig. 1. Chemical structure of thielocin A1 β .

THE JOURNAL OF ANTIBIOTICS

Naja mocambique mocambique PLA₂, *Vipera russeli* PLA₂ and *Crotalus adamanteus* PLA₂ were purchased from Sigma. L-3-Phosphatidylethanolamine, 1-palmitoyl-2-[1-¹⁴C]linoleoyl (2.18 GBq/mmol), L-3-phosphatidylethanolamine, 1-acyl-2-[1-¹⁴C]arachidonyl (2.21 GBq/mmol), L-3-phosphatidylinositol, 1-stearoyl-2-[1-¹⁴C]arachidonyl (2.15 GBq/mmol) and L-3-phosphatidylcholine, 1-stearoyl-2-[1-¹⁴C]arachidonyl (2.16 GBq/mmol) were purchased from Amersham Corp. Rat PLA₂-I was isolated from rat pancreas homogenate according to the method of ONO *et al.*¹¹. Rat PLA₂-II was purified from rat platelets¹². Human PLA₂-I was purified from pancreatic juice¹³. Human PLA₂-II was isolated from rheumatoid arthritic synovial fluid according to the method of KANDA *et al.*¹⁴⁾. Purified PLA₂s showed a single band of approximately 14 kdaltons by Coomassie brilliant blue staining on SDS-polyacrylamide gel electrophoresis. Autoclaved [³H]oleic acid-labeled *Escherichia coli* (200,000 cpm containing approximately 1.0 nmol of phosphatidylethanolamine and phosphatidylglycerol) was obtained by the procedure of DAVIDSON *et al.*¹⁵. All other reagents were of analytical grade or better.

Assay of Phospholipase A2

 PLA_2 activity was measured by the method described previously¹⁶⁾. The substrate was prepared by diluting 1-palmitoyl-2-[1-14C]linoleoyl phosphatidylethanolamine with L-a-phosphatidylethanolamine to the specific activity of 2,000 dpm/nmol. The lipids were then dried under N_2 and suspended in deionized water with a probe sonicator. The standard reaction mixtures in a total volume of $250 \,\mu$ l contained Tris-HCl buffer (100 mM, pH 7.4), CaCl₂ (3 mM), substrate (40 µM) and enzyme. The reaction was started by addition of the enzyme solution. The amount of PLA_2 s were adjusted to optimize linear kinetics for quantitation, *i.e.*, hydrolysis of substrate was less than 20% hydrolysis in all experiments. Thielocin A1 β was added to the assay tubes as a DMSO solution (2% of the final volume), using a DMSO-enzyme control. Control experiments showed that DMSO at this concentration had no effect on enzymatic activities. Following incubation at 37° C for 20 minutes, the reactions were terminated by addition of 1.25 ml of DOLE's reagent¹⁷), and released free fatty acid was extracted and subjected to liquid scintillation counting by the method of NATORI et al.¹⁸⁾. Inhibition is expressed as the percent of enzyme control. Data points are the means of two independent experiments, each performed in duplicate and corrected for no enzymatic hydrolysis (0.5% or less in all experiments). The standard error of the mean was 8% or less than the mean for each data point. IC₅₀ values were determined graphically from plots of percent inhibition versus log concentration of inhibitors.

Fluorescence Measurements

The relative fluorescent intensity of PLA₂ mixtures in a total volume of 2.0 ml contained 7 nmol of *Naja naja* venom PLA₂, 100 mm Tris-HCl buffer (pH 7.4), 3 mm CaCl₂, and the indicated concentrations of thielocin A1 β were monitored using Hitachi F-3000 fluorescence spectrophotometer.

Results

Inhibition of Extracellular PLA₂s by Thielocin A1 β

Thielocin A1 β showed extremely strong inhibition against rat PLA₂-II in a dose-dependent manner with an IC₅₀ of 0.0033 μ M (Fig. 2A). However, thielocin A1 β showed weak inhibitory activity against PLA₂ purified from rat pancreas, which belongs to group I PLA₂, with an IC₅₀ of 21 μ M. Thus, thielocin A1 β inhibition of rat PLA₂-II was 6.4 × 10³ times greater than that of rat PLA₂-I. On the other hand, mepacrine, a reputed PLA₂ inhibitor¹⁹, showed nonspecific inhibitory activity against both rat PLA₂-I (IC₅₀=135 μ M) and rat PLA₂-II (IC₅₀=240 μ M) (Fig. 2B). These results demonstrate that thielocin A1 β specifically inhibits rat group II PLA₂.

In addition, inhibitory activity of thielocin A1 β against human PLA₂s were determined (Table 1). Thielocin A1 β was active against human group II PLA₂ purified from rheumatoid synovial fluid (IC₅₀ = 12 μ M). On the other hand, thielocin A1 β did not inhibit human pancreas PLA₂, which belong to group I PLA₂, up to 100 μ M. These results suggest that the specific inhibitory activity of thielocin A1 β is

Fig. 2. Inhibition of extracellular phospholipase $A_{2}s$ by thielocin A1 β (A) and mepacrine (B).

The activities of the enzyme control (*i.e.* 100%) were from 12,400 to 16,400 nmol/minute/mg protein of rat PLA_2 -I (\blacktriangle) and from 6,630 to 8,350 nmol/minute/mg protein of rat PLA_2 -II (\blacklozenge).

also conserved in human extracellular PLA₂s. Furthermore, thielocin A1 β also showed inhibitory activity against various PLA₂s purified from the venoms of bee and snakes. But the dose required for 50% inhibition was varied from 2.0 μ M for bee venom PLA₂ to 17 μ M for V. russelli venom and C. adamanteus venom PLA₂.

Effect of Ca^{2+} and Substrate Concentration on the Inhibition of Rat PLA₂-II by Thielocin A1 β

inhibition of rat PLA₂-II by thielocin A1 β was

To begin to examine the mechanism of action,

Table 1. Inhibition of various phospholipase A_2s by thielocin A1 β .

Phospholipase A ₂	IC ₅₀ (µм)	
Group I		
Human pancreas	$> 100^{a}$	
Rat pancreas	21	
Bee venom	2.0	
<i>Naja naja</i> venom	7.1	
N. mocambique venom	9.3	
Group II		
Human rheumatoid synovial	12	
Rat platelet	0.0033	
Vipera russelli venom	17	
Crotalus adamanteus venom	17	

^a Thielocin A1 β exhibited 10% inhibition at 100 μ M.

measured as a function of Ca^{2+} concentration. The inhibition of rat PLA_2 -II by thielocin A1 β was independent of Ca^{2+} concentration (Fig. 3A). Therefore, inhibition by thielocin A1 β may not be mediated by displacement of catalytically essential Ca^{2+} from enzyme. In addition, we examined the extent of inhibition by thielocin A1 β as a function of substrate concentration. Inhibition of rat PLA₂-II by thielocin A1 β was independent of the substrate concentration (Fig. 3B). The activity is not due to direct interaction with the substrate of phosphatidylethanolamine.

> Independence of the Inhibition of Rat PLA_2 -II by Thielocin A1 β from Substrate Form and Phospholipid Species

Many inhibitors, including manoalide²⁰⁾ and acylamino phospholipid analogues²¹⁾, depend its inhibitory activity on substrate presented in the physical form (*E. coli* membranes, phospholipids presented as surfactant mixed micelles or sonicated liposomes). Interestingly, thielocin A1 β showed similar inhibitory activity against rat PLA₂-II, whatever substrate form was used (Table 2). In addition, thielocin A1 β showed similar PLA₂ inhibitory activity even when various phospholipids (phosphatidylethanolamine, Fig. 3. Effects of Ca^{2+} (panel A) and substrate (panel B) concentration on the inhibition of rat group II phospholipase A_2 activity by thielocin A1 β .

(A) Reaction mixtures, contained 5 ng of rat PLA₂-II, were incubated with CaCl₂ and 0.01 μ M (\bullet), 0.1 μ M (\bullet) of thielocin A1 β .

(B) Reaction mixtures contained rat PLA₂-II, 1-palmitoyl-2- $[1^{-14}C]$ linoleoyl phosphatidylethanolamine and $0.002 \,\mu$ M (\odot), $0.005 \,\mu$ M (\blacksquare), $0.02 \,\mu$ M (\blacktriangle) of thielocin A1 β .

(B)

Table 2. Effect of thielocin A1 β on the rat group II phospholipase A₂ activities toward various substrates.

Substrate	Specific activity (nmol/minute/mg protein)	IC ₅₀ (µм)
PEª	7,600	0.0033
PE+0.03% Triton X-100 ^b	3,400	0.022
<i>Escherichia coli</i> membranes ^c	31,000	0.0090

 ^a l-Palmitoyl-2-[1-¹⁴C]linoleoyl phosphatidylethanolamine was used as substrate.

² Triton X-100 was suspended in deionized water with 1-palmitoyl-2-[1-¹⁴C]linoleoyl phosphatidylethanolamine to the final concentration of 0.03%.

^c [³H]Oleic acid-labeled *E. coli* phospholipids were used as substrate (background hydrolysis was < 3%).</p>

Table 3. Effect of thielocin A1 β and cinatrin C₃ on the rat group II phospholipase A₂ activities toward various phospholipids.

	IC ₅₀ (µм)		
Substrate	Thielocin A1 β	Cinatrin C ₃	
Phosphatidylethanolamine ^a	0.020	230	
Phosphatidylinositol ^b	0.019	4.0	
Phosphatidylcholine ^c	0.011	23.0	

^a Phosphatidylethanolamine, 1-acyl-2-[1-¹⁴C]arachidonyl.

^b Phosphatidylinositol, 1-stearoyl-2-[1-¹⁴C]arachidonyl.

^c Phosphatidylcholine, 1-stearoyl-2-[1-¹⁴C]arachidonyl containing 0.03% Triton X-100 were used as substrates.

phosphatidylcholine and phosphatidylinositol) were used (Table 3). Recently, we isolated cinatrins²²⁾, a novel family of PLA₂ inhibitors. However, cinatrin C₃ showed different inhibitory activity against rat PLA₂-II when various phospholipids were used as substrate (Table 3).

Reversibility of the Inhibition by Thielocin A1 β

Further kinetic analysis was carried out to determine the mechanism of rat PLA_2 -II inhibition by thielocin A1 β . The reversible characteristics of thielocin A1 β was confirmed using the dilution method according to LISTER *et al.*²³⁾ (Table 4). Rat PLA₂-II was preincubated with thielocin A1 β (37°C, 20 minutes) at 0.3 μ M, this concentration is high enough to sufficiently reduce the enzymatic activity (see Fig. 2). After the preincubation, an aliquot was removed and diluted 30-fold to 0.0033 μ M in the assay mixture, and there was slight inhibition observed, indicating reversible inhibition. Had the inhibition been ir-

Compound	Concentrati	Concentration (µM)		Phospholipase A ₂ activity (% of control)		
	Droingybutiona	eincubation ^a Assay ^b	Predicted		Experimentally	
	Premeubation		Irreversible	Reversible	found	
Thielocin A1 β	0.1	0.0033	0.75	50	81±11	
,	0.3	0.01	0	31	25 ± 10	
p-BPB	90	3.0	7.5	91	10 ± 4	
•	300	10	5.1	30	10 ± 4	

Table 4. Distinction between reversible and irreversible inhibition for thielocin A1 β and p-bromophenacyl bromide (p-BPB).

^a Rat PLA₂-II was preincubated with inhibitor at the designated concentration for 20 minutes.

^b Inhibitor concentration after dilution for assay.

Fig. 4. Noncompetitive inhibition of rat group II phospholipase A_2 by thielocin A1 β .

Double reciprocal plot of rat PLA₂-II activity toward phosphatidylethanolamine in the presence of $(0.005 \ \mu M, \ \Delta \ and \ 0.015 \ \mu M, \ \Box)$ or absence (\bullet) of thielocin Al β . Standard assay conditions were employed and the lines were drawn on the basis of regression analysis.

reversible, the rate should have been inhibited at least 99.2%, corresponding to an inhibitor concentration of $0.1 \,\mu$ M. A similar result was observed when the thielocin A1 β concentration during the preincubation was set at $0.3 \,\mu$ M and then diluted to $0.01 \,\mu$ M during the assay. On the other hand, *p*-bromophenacyl bromide (*p*-BPB), a putative irreversible PLA₂ inhibitor, showed similar inhibitory activity before and after dilution, indicating irreversible inhibition. Furthermore, double recipFig. 5. Effect of thielocin A1 β on the fluorescence of snake venom phospholipase A₂.

Samples were excited at 280 nm and the emission intensity was measured from 300 to 460 nm; —, enzyme alone; ---, enzyme + thielocin A1 β ; ---, thielocin A1 β alone.

Fig. 6. Fluorescence of the snake venom phospholipase A_2 as a function of the concentration of thielocin A1 β .

Samples were excited at 280 nm and emission was measured at 348 nm. Fluorescence of the enzyme alone = 100%. The values indicate averages \pm SD (n=3).

rocal plot showed that thielocin A1 β behaves kinetically as a noncompetitive inhibitor for rat PLA₂-II with *Ki* of 0.0068 μ M (Fig. 4).

THE JOURNAL OF ANTIBIOTICS

Effect of Thielocin A1 β on the Fluorescence Emission of Snake Venom PLA₂

Direct interaction of thielocin A1 β with snake venom PLA₂ (*N. naja*) was examined by monitoring tryptophan fluorescence of the enzyme in the presence and absence of thielocin A1 β . Excitation of this PLA₂ at 280 nm resulted in a broad fluorescent peak ranging from 300 to 420 nm with maximal emission at 348 nm (Fig. 5). Furthermore, Fig. 5 also demonstrated the addition of 12.5 μ M thielocin A1 β to PLA₂ markedly quenches tryptophan fluorescence as evidenced by the diminished relative emission in the wide spectral region. Thielocin A1 β quenched the relative fluorescence of 3.5 μ M snake venom PLA₂ at 348 nm in a dose-dependent manner (Fig. 6). Fifty % of the fluorescence was quenched when the molar ratio of thielocin A1 β /PLA₂ was 2.2. These fluorescence studies indicate that thielocin A1 β interacts with *N. naja venom* PLA₂.

Discussion

The data from these studies show that thielocin A1 β inhibits a broad spectrum of extracellular PLA₂. Thielocin A1 β exhibits extremely strong inhibitory activity against rat PLA₂-II with an IC₅₀ of 0.0033 μ M (Table 1). Some alkaloids and non-steroidal anti-inflammatory agents displace Ca2+ and thus the inhibition by these agents appear to be dependent on Ca^{2+} concentration²⁴⁾. However, we found the inhibition by thielocin A1 β to be independent of the Ca²⁺ content. Many non-specific PLA₂ inhibitors have been thought to affect the "quality of the interface" by modifying phospholipid bilayer properties that render phospholipid inaccessible to the enzyme²⁵⁾. For example, DAVIDSON et al.¹⁵⁾ found that lipocortin, which is thought to be an important steroid inducible inhibitor, inhibits PLA₂ by sequestering the phospholipid substrate; the inhibition can be overcome by high phospholipid substrate concentrations. Moreover, we have recently reported that the inhibitory activity of duramycin, a polypeptide PLA₂ inhibitor²⁶, exclusively depends on the substrate concentration, and its activity is probably due to direct interaction with the substrate of phosphatidylethanolamine¹⁶). On the other hand, our data suggest that thielocin A1 β interacts directly with the protein to inhibit PLA₂ activity since the inhibitory activity was independent of the substrate concentration (Fig. 3B). More, experiments (Fig. 6) monitoring the fluorescence of N. naja venom PLA2 show that thielocin A1 β quenches the fluorescence of this protein supporting direct interaction of thielocin A1 β with the protein. DE HAAS and co-workers²⁷⁾ reported that a substrate-derived PLA₂ inhibitor, (R)-2-dodecanoyl-amino-1-hexanol-phosphoglycol, competitively inhibits porcine pancreas PLA2. However, thielocin A1 β inhibits rat PLA₂-II noncompetitively, and the Ki value of 0.0068 μ M corresponded well to the IC₅₀ value of 0.0033 μ M (Fig. 4). Recently, we reported the mechanism of inhibition by cinatrins¹⁶) which showed variable inhibitory activity against rat PLA2-II when different phospholipids were used as substrate (Table 3). It appeared that this discrepancy was due to the amphipathic property of cinatrin C_3 . In contrast, thielocin A1 β inhibits PLA₂ regardless of substrate form and phospholipid substrate. Therefore, thielocin A1 β may serve as valuable tool for revealing the substrate-function relationship of extracellular PLA₂.

Manoalide, which is a potent inhibitor of bee venom $(IC_{50}=0.05\,\mu\text{M})^{28}$ and cobra venom $(IC_{50}=2\,\mu\text{M})^{20}$ PLA₂, also inhibits phosphatidylinositol-specific phospholipase C purified from guinea pig uterus $(IC_{50}=1.5\,\mu\text{M})^{29}$. Thielocin A1 β did not inhibit phosphatidylinositol-specific phospholipase C purified from human platelets at concentrations up to 50 μ M (Y. NOZAWA; personal communication). These results taken together suggest that thielocin A1 β is a specific inhibitor for extracellular PLA₂.

Several studies have implicated PLA₂-II in the pathogenesis of inflammation¹⁹⁾. ARITA and co-workers have recently found that some inflammatory factors dramatically increased PLA₂-II secretion from several tissues of rat *via* enhancement of gene transcription^{30~34)}. Recently, MURAKAMI *et al.*³⁵⁾ demonstrated that the effect of rat PLA₂-II on PGD₂ generation by mast cells obtained from the peritoneal cavity of rats was abolished by pretreatment of the enzyme with thielocin A1 β . Thus, PLA₂-II may function in the process of inflammation by acting on IgE-antigen-primed mast cells to generate eicosanoids. Importantly, thielocin A1 β inhibited PLA₂-II reversibly. Hence, it may be possible to control extracellular PLA₂ activity in inflammatory regions with thielocin A1 β .

Studies are in progress to develop a kinetic model for PLA₂ inhibition by thielocin A1 β , and to define,

the physiological role of extracellular PLA_2 in the progression of inflammatory diseases.

Acknowledgments

We wish to thank Professor KEIZO INOUE, University of Tokyo, for the generous supply of the anti-rat platelet derived PLA_2 monoclonal antibody. We also thank Professor YOSHINORI NOZAWA, Gifu University of Medicine, for the valuable suggestions. Helpful discussions with Drs. ICHIRO KUDO, MAKOTO MURAKAMI and SHUNTARO HARA, University of Tokyo, are gratefully acknowledged. We thank AKIKO KANDA, Shionogi Research Laboratories, for the supply of rat PLA_2 -I, human PLA_2 -I and PLA_2 -II. Dr. HITOSHI ARITA, Shionogi Research Laboratories, is gratefully acknowledged for reviewing the manuscript.

References

- 1) DENNIS, E. A.: Phospholipases. In The Enzymes. Vol. 16. Ed., P. D. BOYER, pp. 307~353, Academic Press, 1983
- 2) VAN DEN BOSCH, H.: Intracellular phospholipase A. Biochim. Biophys. Acta 604: 191~246, 1980
- HEINRIKSON, R. L.; E. T. KRUEGER & P. S. KEIM: Amino acid sequence of phospholipase A₂-α from the venom of *Crotalus adamanteus*. A new classification of phospholipase A₂ based upon structural determinants. J. Biol. Chem. 252: 4913~4921, 1977
- 4) OHARA, O.; M. TAMAKI, E. NAKAMURA, Y. TSURUTA, Y. FUJII, M. SHIN, H. TERAOKA & M. OKAMOTO: Dog and rat pancreatic phospholipases A₂: Complete amino acid sequences deduced from complementary DNAs. J. Biochem. 99: 733~739, 1986
- 5) FRANSON, R.; R. DOBROW, J. WEISS, P. ELSBACH & W. B. WEGLICKI: Isolation and characterization of a phospholipase A₂ from an inflammatory exudate. J. Lipid Res. 19: 18 ~ 23, 1978
- 6) CHANG, H. W.; I. KUDO, M. TOMITA & K. INOUE: Purification and characterization of extracellular phospholipase A₂ from peritoneal cavity of caseinate-treated rat. J. Biochem. 102: 147~154, 1987
- 7) PRUZANSKI, W.; P. VADAS, E. STEFANSKI & M. B. UROWITZ: Phospholipase A_2 activity in sera and synovial fluids in rheumatoid arthritis and osteoarthritis. Its possible role as a proinflammatory enzyme. J. Rheumatol. 12: $211 \sim 216$, 1985
- VISHWANATH, B. S.; A. A. FAWZY & R. C. FRANSON: Edema-inducing activity of phospholipase A₂ purified from human synovial fluid and inhibition by aristolochic acid. Inflammation 12: 549~561, 1988
- VADAS, P.; W. PRUZANSKI, J. KIM & V. FORNASIER: The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A₂. Am. J. Pathol. 134: 807~811, 1989
- 10) YOSHIDA, T.; S. NAKAMOTO, R. R. SAKAZAKI, K. MATSUMOTO, Y. TERUI, T. SATO, H. ARITA, S. MATSUTANI, K. INOUE & I. KUDO: Thielocins Ala and Al β , novel phospholipase A₂ inhibitors from ascomycetes. J. Antibiotics 44: 1467~1470, 1991
- ONO, T.; H. TOJO, K. INOUE, H. KAGAMIYAMA, T. YAMANO & M. OKAMOTO: Rat pancreatic phospholipase A₂: Purification, characterization, and N-terminal amino acid sequence. J. Biochem. 96: 785 ~ 792, 1984
- 12) MURAKAMI, M.; I. KUDO, Y. NATORI & K. INOUE: Immunochemical detection of 'platelet type' phospholipase A_2 in the rat. Biochim. Biophys. Acta 1043: $34 \sim 42$, 1990
- 13) NISHUJMA, J.; M. OKAMOTO, M. OGAWA, G. KOSAKI & T. YAMANO: Purification and characterization of human pancreatic phospholipase A₂ and development of a radioimmunoassay. J. Biochem. 94: 137~147, 1983
- 14) KANDA, A.; T. ONO, N. YOSHIDA, H. TOJO & M. OKAMOTO: The primary structure of a membrane-associated phospholipase A₂ from human spleen. Biochem. Biophys. Res. Commun. 163: 42~48, 1989
- 15) DAVIDSON, F. F.; E. A. DENNIS, M. POWELL & J. R. GLENNEY, Jr.: Inhibition of phospholipase A₂ by "lipocortins" and calpactins. An effect of binding to substrate phospholipids. J. Biol. Chem. 262: 1698~1705, 1987
- 16) TANAKA, K.; H. ITAZAKI & T. YOSHIDA: Cinatrins, a novel family of phospholipase A₂ inhibitors. II. Biological activities. J. Antibiotics 45: 50~55, 1992
- DOLE, V. P. & H. MEINERTZ: Microdetermination of long-chain fatty acids in plasma and tissues. J. Biol. Chem. 235: 2595~2599, 1960
- 18) NATORI, Y.; K. KARASAWA, H. ARAI, Y. TAMORI-NATORI & S. NOJIMA: Partial purification and properties of phospholipase A₂ from rat liver mitochondria. J. Biochem. 93: 631~637, 1983
- VADAS, P. & W. PRUZANSKI: Biology of disease. Role of secretory phospholipase A₂ in the pathobiology of disease. Lab. Invest. 55: 391 ~ 404, 1986
- 20) LOMBARDO, D. & E. A. DENNIS: Cobra venom phospholipase A₂ inhibition by manoalide. A novel type of phospholipase inhibitor. J. Biol. Chem. 260: 7234~7240, 1985
- YU, L.; R. A. DEEMS, J. HAJDU & E. A. DENNIS: The interaction of phospholipase A₂ with phospholipid analogues and inhibitors. J. Biol. Chem. 265: 2657 ~ 2664, 1990
- 22) ITAZAKI, H.; K. NAGASHIMA, Y. KAWAMURA, K. MATSUMOTO, H. NAKAI & Y. TERUI: Cinatrins, a novel family of

phospholipase A_2 inhibitors. I. Taxonomy and fermentation of the producing culture; isolation and structures of cinatrins. J. Antibiotics 45: $38 \sim 49$, 1992

- 23) LISTER, M. D.; K. B. GLASER, R. J. ULEVITCH & E. A. DENNIS: Inhibition studies on the membrane-associated phospholipase A₂ in vitro and prostaglandin E₂ production in vivo of macrophage-like P388D₁ cell. J. Biol. Chem. 264: 8520~8528, 1989
- 24) FRANSON, R. C.; D. EISEN, R. JESSE & C. LANNI: Inhibition of highly purified mammalian phospholipase A₂ by non-steroidal anti-inflammatory agents. Biochem. J. 186: 633~636, 1980
- 25) FAWZY, A. A.; B. S. VISHWANATH & R. C. FRANSON: Inhibition of human non-pancreatic phospholipase A₂ by retinoids and flavonoids. Mechanism of action. Agents Actions. 25: 394~400, 1988
- 26) FREDENHAGEN, A.; G. FENDRICH, F. MÄRKI, W. MÄRKI, J. GRUNER, F. RASCHDORF & H. H. PETER: Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A₂. Structural revision of duramycin and cinnamycin. J. Antibiotics 43: 1403~1412, 1990
- 27) DE HAAS, G. H.; R. DIJKMAN, M. G. VAN OORT & R. VERGER: Competitive inhibition of lipolytic enzymes. III. Some acylamino analogues of phospholipids are potent competitive inhibitors of porcine pancreatic phospholipase A₂. Biochim. Biophys. Acta 1043: 75~82, 1990
- 28) GLASER, K. B. & R. S. JACOBS: Molecular pharmacology of manoalide. Inactivation of bee venom phospholipase A₂. Biochem. Pharmacol. 35: 449~453, 1986
- 29) BENNETT, C. F.; S. MONG, H-L. W. WU & S. T. CROOKE: Inhibition of phosphoinositol-specific phospholipase C by manoalide. Pharmacologist 28: 538 (abstr.), 1986
- 30) NAKANO, T. & H. ARITA: Enhanced expression of group II phospholipase A₂ gene in the tissues of endotoxin shock rats and its suppression by glucocorticoid. FEBS Lett. 273: 23~26, 1990
- 31) NAKANO, T.; O. OHARA, H. TERAOKA & H. ARITA: Group II phospholipase A₂ mRNA synthesis is stimulated by two distinct mechanisms in rat vascular smooth muscle cells. FEBS Lett. 261: 171~174, 1990
- 32) NAKANO, T.; O. OHARA, H. TERAOKA & H. ARITA: Glucocorticoids suppress group II phospholipase A₂ production by blocking mRNA synthesis and post-transcriptional expression. J. Biol. Chem. 265: 12745 ~ 12748, 1990
- 33) OKA, S. & H. ARITA: Inflammatory factors stimulate expression of group II phospholipase A₂ in rat cultured astrocytes. Two distinct pathways of the gene expression. J. Biol. Chem. 266: 9956~9960, 1991
- 34) KURIHARA, H.; T. NAKANO, N. TAKASU & H. ARITA: Intracellular localization of group II phospholipase A₂ in rat vascular smooth muscle cells and its possible relationship to eicosanoid formation. Biochim. Biophys. Acta 1082: 255~292, 1991
- 35) MURAKAMI, M.; I. KUDO & K. INOUE: Eicosanoid generation from antigen-primed mast cells by extracellular mammalian 14-kDa group II phospholipase A₂. FEBS Lett. 294: 247~251, 1991